
Many publications on systematic behavioral observa-
tion methods (see Bakeman & Gottman, 1997; Bass, 1987; 
Johnston & Pennypacker, 1993; Lehner, 1998; Martin & 
Bateson, 1993; Sackett, 1978; Sharpe & Koperwas, 2003) 
have emphasized problematic issues in attaining maximal 
interobserver accuracy and intraobserver recording con-
sistency. Although theoretical and methodological discus-
sions often have focused on observer calibration and reli-
ability decay (see Bakeman & Gottman, 1997), we have 
found little empirical research on intraindividual vari-
ability in accuracy (see Bass, 1987; Patterson & Moore, 
1979; Taplin & Reid, 1973). In fact, we have found no 
publication that has reported stability in coding accuracy 
or reliability using momentary point-by-point time series 
measures of accuracy within coding sessions and only one 
(Bass, 1987) that has systematically tracked accuracy and 
variability as a time series across successive sessions.

In part, this paucity of research is a product of former 
technological limitations for measuring moment-by-
moment variations in observer accuracy. Nevertheless, im-
plications of accuracy variation extend beyond theoretical 
or methodological concern. Accuracy calibration, decay, 
and stability in detecting ongoing behavior states and state 
changes are also fundamental to multistaff-delivered be-
havioral interventions. For example, consistencies in cli-
ent contingency management and staff performance eval-
uations within residential treatment facilities have highly 
practical implications and typically involve substantial 

expert-trainer time and expense. This article introduces 
a new technology that addresses such training and as-
sessment issues based on an expert-referenced intelligent 
training system (ITS). This system is designed to train and 
calibrate individual observational and coding behaviors 
using automated running averages of entry-by-entry ac-
curacy measures.

Video and Computers 
in Observer Training

By the early 1980s, psychological researchers began 
to recognize the value of introducing video into observa-
tional training as a means of addressing both effectiveness 
and efficiency. For example, Van Der Molen, Kerkhof, 
and Jong (1983) suggested that although field experience 
was still an important part of the training process, video-
based training for complex behavioral coding was more 
efficient than field-based training. By the late 1980s, the 
continuing need for improved methods led Bass (1987) 
to explore the effectiveness of computer-assisted inter-
ventions in video-based observer training. Bass’s study 
is noteworthy for several innovations beyond our prior 
note of his across-sessions comparison of accuracy. He 
presents one of the rare studies we have found that has 
systematically explored alternative levels of data source 
complexity, taxonomic demand characteristics, and alter-
native levels of support given during training.
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the process in Catania (1998) and a historic discussion of 
Skinner’s discovery of the process in Peterson (2004).

Train-to-Code 
Design Features and 

Formative Evaluation Strategies

TTC offers two alternative user interfaces, or modes of 
use: the instructor/trainer mode and the student mode. Both 
of these modes incorporate feature sets that are currently 
evolving on the basis of formative and evaluative research 
(Layng, Stikeleather, & Twyman, 2006), as exemplified by 
the research presently reported. In this section, we will de-
scribe features that were the foundation for our initial ex-
periments. We subsequently will detail alterations and ad-
ditions made to those features, after reporting the specific 
experimental results that led to respective modifications.

Instructor Mode
The instructor mode of TTC allows trainers or instruc-

tors to develop any number of customized expert training 
setups, using their own digital video file(s) and their own 
behavioral taxonomy or coding scheme. By applying any 
given taxonomy to code one or more videos, and by saving 
this coding as an expert reference file, instructors generate 
a customized personal training system. The TTC system 
may eventually allow an instructor to select and teach any 
1 of 14 alternative recording procedures (J. M. Ray, Gil-
lins, & Ray, 2006), while also teaching accurate and stable 
use of any given (single-domain) coding scheme. One of 
two currently implemented recording procedures, behav-
ior frequency count (BFC), creates a simple frequency-of-
occurrence count reflecting the total number of instances 
of each behavior category occurring throughout an entire 
observation session. The second implemented recording 
procedure, continuous coding (CC), requires use of an ex-
haustive category taxonomy and retains both the sequence 
and the corresponding temporal onset/offset of each suc-
cessive behavioral event. This is the required procedure 
for generating all expert reference coding, thus supplying 
state information for all successive frames of correspond-
ing video source files.

TTC’s design affirms that, to be a training system rather 
than an informational instruction system, a system must 
do more than present instructional text. And to be a truly 
adaptive training system, an application must offer vary-
ing prompting assistance and discriminative response 
feedback as adaptive services tailored to a student’s chang-
ing skill levels. This is achieved by implementing vari-
ous levels of adjustable video play rates, event discrimi-
nation prompting, and coding response feedback, with 
these features being gradually faded as coding accuracy 
increases—thus shaping a student’s coding performance 
to accuracies equivalent to those of an expert observer/
recorder. Parameters controlling adaptive services in TTC 
have default settings but are also accessible by instructors 
via a training management panel for parameter adjust-
ment or empirical evaluation (see the upper-right corner 
of Figure 1). The instructor mode also allows for tracking 
a student’s progress through time series graphs of observer 

A few additional computer-based observation-related 
programs have been developed over the subsequent de-
cades (e.g., COR by Blasko, Kazmerski, Corty, & Kall-
gren, 1998; OBSERVE by Dickins et  al., 2000; and 
CORv2 by Blasko, Kazmerski, & Torgerson, 2004). 
However, these programs tend to emphasize the teaching 
of conceptual issues embedded in observational methods 
and procedures or to offer assisted data recording and 
automated data analysis, rather than actually training ob-
servational discrimination and coding skills per se. Thus, 
although existing programs represent various alternative 
instructional models for incorporating video and com-
puter technologies into observational instruction, most 
remain static or passive in efforts to develop coding skills 
and offer only slight improvement over more traditional 
textbook instructions. Put simply, these systems focus 
more on informing than on skill training. Nevertheless, 
advances in informational tutoring system designs offer 
significant guidance to inform the design for computer-
based skill training.

Modern artificially intelligent computer-based tutoring 
systems—another form of ITS—typically stress text-based 
presentations of stimuli and question answering, rather 
than focusing on perceptual–motor skill performance (see 
Graesser, Jackson, & McDaniel, 2007; Graesser et al., 
2004; R. D. Ray, 2004; R. D. Ray, Gogoberidze, & Be-
giashvili, 1995). At their best, such programs incorporate 
intelligent and goal-adaptive expert models to offer ser-
vices that simulate the dynamic and changing nuances of 
one-on-one human instruction (R. D. Ray, 2004). Such 
ITSs are based on an instructional model that incorpo-
rates both (1) knowledge generation engines that model 
the developing student skill or knowledge repertory and 
(2) a set of alternative training goals or objectives that 
dynamically adjust to evolving changes in student per-
formances (R. D. Ray & Belden, 2007). Such systems 
compare student progress with an expert reference model 
for purposes of individualized and informed content and 
prompt presentation, tutoring/training, feedback, and ob-
jectives implementation.

As has been noted, this article introduces a new observer 
training system, called Train-to-Code (TTC), that incor-
porates an adaptive expert systems model for computer-
ized training. More specifically, TTC trains observers via 
an operant response-shaping instructional model (R. D. 
Ray, 1995; R. D. Ray et al., 1995) that guides training by 
incorporating a gradation of successive approximations, 
or behavioral steps, to bridge the gap between novice 
skills and expert skills via a succession of escalating and 
targeted skill and support stages. As we apply it, shaping 
is a personally focused procedure used to facilitate a stu-
dent’s progression through successive skill development 
stages by supplying various degrees of stimulus prompt-
ing and accuracy-driven feedback as reinforcement. We 
begin with high-density prompts and feedback that sys-
tematically fade to lower densities until no prompting and 
no feedback are given at all. Readers unfamiliar with the 
operant shaping process and its emphasis on the differ-
ential reinforcement of successive approximations to a 
goal response class will find a substantial discussion of 
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mate real-time transitions between behaviors, while also 
showing the behavioral term (code) that describes each 
component of that transition.

Training. In TTC, each student coding response is im-
mediately compared with the expert model on the basis 
of the reference file described earlier. Each response is 
logged and marked as correct or incorrect (the type of 
error, based on several alternative possibilities, is re-
corded as well). Student–expert response comparisons 
are continually used to determine appropriate stimulus 
prompts and coding feedback, as well as point-by-point 
accuracy measurements and adaptive instructional ser-
vices. These services define the adaptive training section, 
which consists of four successive approximation levels of 
alternative services described below. Relying upon our 
operant response-shaping instructional model discussed 
previously, visual timing prompts and error-correcting 
feedback messages are gradually faded as the student ad-
vances through the four levels. When performance sug-
gests the need, the student may also be prompted to return 
to a lower level for more supportive training. The follow-
ing sections detail the training methods used with the BFC 
recording procedure defined earlier. A similar program of 
adaptivity is used for alternative recording procedures, 
but specific prompting and feedback features are appro-
priately modified to be procedure-specific.

Training Level 1. The first level of training assumes 
only prior foundations exposure and is designed to pro-
vide maximum prompting with respect to behavioral 
timing and feedback. At Training Level 1, a student is 
prompted to observe each new behavioral occurrence by 
the presentation of a green frame surrounding the video 

accuracy measures, as Van Der Molen et al. (1983) have 
defined this term.

Student Mode
The student mode in TTC consists of three alternative 

student services. These three services include (1) a founda-
tions section that provides three forms of video-illustrated 
definitional material designed to teach the terms and defi-
nitions that make up a taxonomy, (2) a training section 
that includes four levels of adaptive training targeting be-
havioral coding skills, and (3) a certification section for 
testing and unassisted performance evaluation.

Foundations. The foundations section of TTC is sub-
divided into three levels. The first level offers operational 
definitions for each behavior in a given taxonomy. The stu-
dent learns these definitions through a mixed media pre-
sentation format. When the student clicks on a behavior 
category in the listing of taxonomic categories (or enters the 
corresponding keypad number, as would be done during a 
coding session), the student is presented a textual definition 
of the behavior, as well as one of a series of available video 
examples illustrating variations of that behavior.

The second level of foundations allows the student to 
manually click through a complete coding session, behav-
ior by behavior, in the actual sequence coded by the expert. 
This allows the student to view behaviors in a controlled 
but natural sequence and to begin to discriminate impor-
tant features defining each behavioral transition. The third 
level (see Figure 2) presents a similar opportunity for ob-
servation, but the manual control over each successive 
sequence is now replaced by an automated pause between 
behaviors. This level is intended to more closely approxi-

Figure 1. Instructor’s panel for training setup and adaptivity parameters.
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ior has started” prompt, the framing of the video window 
becomes yellow for the second half of the behavior’s dura-
tion. If a code has not been entered by the final 2 sec of 
the behavior, the prompt frame changes from yellow to 
red—indicating the imminent end of the behavior.

If an incorrect code is entered at any time during the be-
havior, a feedback message appears indicating that the cur-
rent behavior is not the code entered (e.g., if, say, the student 
is coding horse gaits and other behaviors and, in the coding 

playback area. This green frame continues for the first half 
of the behavior’s total duration. If the student codes the 
behavior correctly during this prompt, feedback is given 
to indicate that the code entered was correct and timely 
(see Figure 3). This correct coding entry also turns off 
the framing prompt for the remainder of that behavior’s 
duration. The green framing prompt reappears on the first 
frame of the next new behavior in continuous video play. 
If any behavior is not coded during the green “new behav-

Figure  2. Foundations mode: Event labeling for a behavioral transition in 
Foundations 3.

Figure 3. Student mode: Prompting and feedback at Training Level 1.
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no feedback is given for correct or incorrect code entries. 
Thus, the only “training” at this level is through presenta-
tions of a message when a behavioral event ends without 
coding (i.e., behavior was missed ). Much like the feed-
back for missed behaviors in Training Level 2, if a student 
fails to code a behavior in Training Level 3, a feedback 
message is presented indicating the specific behavior just 
missed. When the feedback message disappears, play re-
sumes, beginning with the next behavior.

Training Level 4. The final level of Training is Level 4, 
also called self assess. At this level, the student is assumed 
to be an expert coder. Thus, neither prompting nor feed-
back is given during coding. This training level simulates 
both an in vivo coding session and the conditions of mas-
tery certification testing in TTC.

Auxiliary Feedback
In addition to the varying types of real-time feedback 

incorporated into the training levels described above, 
delayed-access auxiliary feedback is accessible during all 
levels of training by opening a pop-up window present-
ing a code browser/viewer (see Figure 4). In this viewer, 
coding entries are presented on a highly detailed frame-
by-frame time line of the video. Above this time line, the 
expert’s coding of the ongoing video is illustrated, and 
under the time line, the student’s coding entries appear. 
A reference replay of the actual video is also provided 
within this tool to illustrate the corresponding footage 
for each coding entry being reviewed. The code viewer 
also allows the student or instructor to see each and every 
coding entry made, including the special marking of all 
errors, across a scrollable time line of the coded video 
segments. In addition, the timing of the coding input with 
respect to the total duration of each behavior is illustrated, 
thus allowing inspections of correct, but delayed, codings, 
as well as error codings.

The code viewer also allows a student or instructor to 
click directly through only the errors in a given coding 

process, enters “RLC” [for “Right-Lead Canter”] during 
the behavior “Jump,” a feedback text message immediately 
appears saying that “the current behavior is not RLC”). The 
video then replays the mislabeled behavior, thus allowing/
requiring that specific behavior to be recoded. If a student 
fails to code a behavior altogether at Training Level 1, a 
feedback message appears indicating that the behavior was 
missed. The missed behavior event is then replayed from its 
beginning for correct coding. When a student’s coding ac-
curacy is at, or above, the instructor-set criteria for correctly 
coding at the current level, a message appears suggesting 
that the student choose to move to the next higher adaptive 
level—Level 2, in this case.

Training Level 2. At Training Level 2, the student’s 
experience is similar to that at Training Level 1, but this 
level also incorporates some subtle and important differ-
ences. Some temporal prompting and feedback features 
have been faded at Training Level 2, as would likely hap-
pen during an in vivo training session. Prompts are now 
used only to indicate the beginning and end of a behav-
ior, thus leaving the majority of the behavioral event un-
prompted. A green frame appears around the video for 
approximately 2 sec at the beginning of the behavior, and 
the red framing again signals the remaining 2 sec at the 
end of the behavior. There is no yellow framing shown at 
any time at this level. If a correct code is entered during a 
behavioral event, the video simply continues with neither 
feedback nor further prompting until the beginning of the 
next behavior. If an incorrect code is entered, a feedback 
message similar to that at Training Level 1 appears. If a 
behavior ends without having been coded during Train-
ing Level 2, a feedback message is presented informing 
the student that a behavior has just been missed, but the 
student is not returned to recode the behavior. Instead, the 
feedback message presents the correct coding.

Training Level 3. Feedback messages and prompts are 
further faded when a student moves to Training Level 3. 
At this level, all temporal framing prompts are faded, and 

Figure 4. Code browser/viewer illustrates both expert and student codings for 
corresponding video frames on a time line. Student coding errors are marked 
with an “X,” and roll-overs bring up explanations of the type of error made.



678        Ray and Ray

to building computerized instructional systems guarantees 
significant evaluative results once the product is com-
pleted. Inherently, such research creates a feedback loop 
between design theory and the working model. If probe 
data suggest that one or more components are not effec-
tive, the product design is modified until desired results are 
achieved, thus iteratively informing design decisions (An-
dronis, Twyman, & Stikeleather, 2004). As was noted ear-
lier, it is under this formative research model that the TTC 
system is being developed and its efficacy investigated. We 
present three such experimental probes to illustrate (1) the 
strategy, (2) the success and failures of specific designs, 
and (3) the current direction our work is taking.

Experiments 1 and 2

Method
Participants. Three female undergraduate psychology majors 

at Rollins College participated in a multisession and multistage 
single-participant research design. For each session, a single par-
ticipant was located at a computer station in one room while the 
experimenter monitored progress from another room via a one-way 
observational window.

Apparatus and Materials. All the participants coded via a 
numeric keypad built into a keyboard on a lower keyboard drawer 
that was separated from the desktop computer. Our initial research 
probes of TTC were designed with rudimentary sports-judging 
skills—specifically, equine hunter–jumper fundamentals. We thus 
generated a mutually exclusive and exhaustive taxonomy based on 
fundamental horse gaits and other competition-related behaviors, 
such as jumping and halting (see Table 1 for the taxonomy and defi-
nitions used). A corpus of home videos depicting various horses and 
riders was edited to include multiple competitive show rounds, with 
each round (defined by a separate entry/exit to/from a low-fenced 
show area via a gate) being separated by a 5-sec black screen video 
segment. Students were required to code each black screen segment 
as “clip” (see Table 1).

session, thereby giving quick and direct access to detailed 
information as to which codings were in error and why 
any given coding entry was incorrect. As has been noted, 
users may also view the corresponding video represen-
tation of each behavior while comparing student coding 
with the correct coding of the expert in frame-by-frame 
playback comparisons. It is expected that this feature will 
be especially useful in targeting timing errors, as well as 
clarifying repeatedly miscoded behaviors.

When using the BFC recording procedure, other feed-
back is available upon completion of an entire coding ses-
sion. One form of feedback is a counting accuracy table. 
As is illustrated in Figure 5, this table reports the total 
student counts for each behavior category, in comparison 
with the expert’s counts. This table also details the student’s 
total counts broken down by categories that include cor-
rect, mislabeled, missed, multiple coding/wrong labeling, 
and multiple coding/correct labeling. Also available is a 
more traditional confusion matrix comparing expert versus 
student codings for each event (see Bakeman & Gottman, 
1997). Accompanying the matrix is a panel of coding accu-
racy statistics based on Cohen’s (1960) kappa and simple 
percentage-of-agreement scores. Alternative recording 
procedures offer similar procedure-specific feedback fea-
tures. For example, CC procedures incorporate only the 
traditional confusion matrix with its appropriate statistics, 
along with access to the code viewer for detailed error 
evaluation. The counting accuracy table does not apply to 
this recording procedure (it is redundant to the confusion 
matrix in this case) and thus is not available.

Formative Evaluation Research Strategies
Layng et al. (2006) suggested that, when used properly 

as part of the design process, a formative research approach 

Figure 5. Coding accuracy table illustrating all coding inputs for expert and student, 
with frequency and types of errors listed for each behavioral category.
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through a programming bug that existed throughout her Experi-
ment 1 conditions, thus causing her to receive what might best be 
construed as “sham training” during this period. She was moved 
directly to Experiment 2 conditions when the random feedback func-
tioning was discovered and corrected. 

All 3 participants were exposed to altered adaptive control pa-
rameters in Experiment 2 in order to assess whether more stringent 
criteria for moving up (90% accuracy across 20 successive codings) 
or down (80% accuracy across 20 codings) between adaptive levels 
might improve accuracy scores and/or reduce variability. After a 
relatively stable performance level was reached in Experiment 2, the 
five rounds coded as baseline were coded again (posttraining), and 
four additional rounds from previously unseen video sources were 
evaluated as a training generalization condition (generalization). 
All 3 participants experienced different (nonrandomized) sequences 
of videos for coding.

Calibrating expected accuracy attainment. Expert systems 
are only as reliable as the expert model on which they rely for imple-
mentation. Variations in alternative videotaping conditions, in the 
complexity of behavioral phenomena being targeted, and numer-
ous other factors—including the number of categories in a training 
taxonomy (see Bass, 1987)—can have significant impact on even 
an expert’s consistency in coding the same training events. As such, 
one may hardly expect trainees to attain accuracy levels consistently 
higher than an expert’s own levels of intraobserver agreement on 
the same video source materials when the expert is using the same 
recording procedures as those used by the trainee. In TTC, the ex-
pert model is defined by a highly trained individual’s codings of all 
videos, using CC procedures. In the best of circumstances, multiple 
individuals may collaborate, using constant discussions aimed at 
establishing a consensus of interpretation and timing to define the 
expert codings.

In the present case, a single individual expert (J.M.R., who has 
over a decade of regional and national equine hunter–jumper compe-
tition experience) originally coded the entire corpus over a relatively 
brief span of a few weeks, using CC procedures. Approximately 
18 months later, she subsequently coded six training sessions under 
the same no-feedback (Level 4) BFC training conditions as those 
experienced by our participants in late sessions. This allowed us to 
inform our expectations for maximal sustained trainee performances 

Procedure. BFC coding procedures required that a student recog-
nize and code the occurrence of each type of behavioral/categorical 
event only while it was still in progress. All the sessions relied upon 
this BFC procedure, which we introduced with instructions that em-
phasized the need to code as quickly as possible following the onset 
of each behavioral event. Unlike field-based BFC coding based on 
real-time rates of occurrence, for training purposes (mainly because 
some categories, such as jump, are extremely brief in duration), all 
coding sessions presented video with play rates set to .7 of the real-
time 30-fps normal video play rate. Upon each keypad input, TTC 
immediately assessed coding accuracy and calculated interobserver 
agreements from unambiguous synchronized comparisons between 
expert and student codings. Thus, a running average of an adjustable 
number of input events was used in TTC to calculate accuracy ratios 
that reflected percentage of agreement (correct inputs divided by 
correct-plus-errors). Critical values alerted a participant as to the 
appropriate level of support the participant was required to accept 
when the program suggested a change in levels. Normally, it is a user 
option to change or remain on current levels, but accepting recom-
mended change was required in all the experiments.

The first experimental stage (baseline) involved giving a par-
ticipant a printed handout with a category-by-category listing of 
the coding taxonomy, along with corresponding definitions for 
each category. We asked the participants to study the handout and, 
subsequently, to refer to it while coding a series of six successive 
rounds. In sessions following baseline coding assessment, we asked 
the participants to review all three levels of foundations training for 
approximately 20 min and, subsequently, to code a new set of five 
additional rounds (postfoundations).

The subsequent condition (Experiment 1) included a succession 
of approximately 30- to 40-min coding sessions with adaptive train-
ing levels in effect for each participant. The number of competitive 
rounds coded per session varied, partly as a function of coding speed 
and accuracy, but usually included between five to nine rounds. At 
this stage, criteria for moving up a level were set to 85% accuracy 
as a running average across 14 consecutive codings, and criteria to 
move down were set at 65% accuracy. After we deemed the data 
to be relatively stable across sessions for Participants 1 and 2, we 
implemented a second experimental condition (Experiment  2). 
Participant 3 was inadvertently exposed to noncontingent feedback 

Table 1 
Equine Behavior Taxonomy

Behavior  Keypad Number  Operational Definition

JMP (jump) 1 The jump begins when both forelegs leave the ground over an obstacle. This is followed by both hind 
hooves leaving the ground to clear the obstacle. The behavior ends when the trailing hind leg touches 
the ground on the landing side of the obstacle.

LLC (left-lead canter) 2 The canter is a three-beat gait. When on the left lead, the horse’s leg movements are characterized 
by the right hind leg moving forward first, followed by the left hind and right front moving forward 
and landing together in time, and finally the left front moving forward and landing in front of all 
other legs.

RLC (right-lead canter) 3 The canter is a three-beat gait. When on the right lead, the horse’s leg movements are characterized 
by the left hind leg moving forward first, followed by the right hind and left front moving forward 
and landing together in time, and finally the right front moving forward and landing in front of all 
other legs.

TRT (trot) 4 The trot is a two-beat gait in which the legs move in diagonal pairs. Thus, the right hind and left 
front move forward together in time, and the left hind and right front move together in time, creating 
diagonal movements.

CC (cross-canter) 5 The cross-canter is a three-beat gait in which the horse is cantering on one lead with his front legs 
and the opposite lead with the hind legs. Thus, leg movements might follow a pattern of left hind 
landing, right hind and right front, and finally left front.

WLK (walk) 6 The walk is a four-beat gait with the legs moving forward in lateral movements, such as right hind 
followed by right front, left hind, and finally the left front.

HLT (halt) 7 The halt is defined as the horse standing in one place with no forward, backward, or side movements 
more than one step in any direction.

Clip  8  Clip indicates a black or gray screen not showing video. This is not a behavior but must be coded.
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samples vary in relatively larger intervals and thereby am-
plify small error differences from round to round.

Second, round-based measurement produces a rela-
tively large number of data points, even when based on 
a relatively small number of different participants. How-
ever, successive within-subjects time series measures in-
volve high degrees of interdependencies, or autocorrela-
tion, thus making standard inferential comparisons based 
on independent measure assumptions suspect techniques, 
despite the robust nature of most commonly used tests 
(Hartmann, 1974; Thoresen & Elashoff, 1974; Toothaker, 
Banz, Noble, Camp, & Davis, 1983). Although singular 
across-session scores may approximate independent mea-
sures by individual, they are likely to include too much of a 
nonlinear acquisition trend in Experiment 1 to allow them 
to be compared with the assumedly more stable scores in 
Experiment 2. Thus, in the subsequent section, we will 
merely illustrate averaged data by condition as a grouped 
time series. In the section following the group consider-
ation, we will evaluate the individual high-resolution data 
for each participant considered from the more appropriate 
and intended design perspective of single-participant time 
series replications.

Intraobserver reliability for the expert. The evalu-
ation of intraobserver agreements for the expert’s BFC-
based recoding of a sample of six sessions is summarized 
in Table 2, and round-by-round variations are illustrated 
in Figure 6. As with participant codings, each session in-
cludes multiple, but varying, numbers of rounds. The col-
umns in Table 2 depict corresponding intraobserver agree-
ment and kappa values for each successive coding session, 
with the mean and standard deviation across all sessions 
depicted in the last column. For this expert, there were 
relatively minor differences between kappa and accuracy 

based on same-condition measurements—a procedure we highly 
recommend for any potential users of TTC.

Results
Data generated from observer codings present numerous 

problems for defining equivalent value points for compar-
ative purposes. Every round a horse makes in competition 
includes a variable number of behaviors performed—a 
phenomenon extant in virtually every naturalistic coding 
situation involving dynamic behavioral foci, regardless of 
species, circumstance, or categories. Likewise, the forced 
error correction procedures of our adaptive tutoring im-
pose a variable number of codings across and within par-
ticipants even when the same round is coded or a fixed 
number of behaviors occur. The mean number of total 
behavioral codings per competitive round used in these 
experiments was 27.25, based on all 3 participants and all 
rounds coded. For this experimental series, our most fun-
damental measure is thus an accuracy measure calculated 
on a per round basis for each participant. This measure is 
defined as the number of correct coding inputs divided by 
the sum of correct codings and all forms of errors made 
(whether commission or omission) for each participant 
coding each successive round.

Singular rounds generate relatively few coding entries 
and, thus, result in a metric that is, in some respects, both 
very high resolution and very low resolution, as compared 
with most research using behavioral observation meth-
ods. Traditionally, entire coding sessions involving many 
behaviors are typically used to generate such measures as 
percentage of agreement or Cohen’s kappa. This differ-
ence has two implications. First, round-based measures 
are high resolution in that they are highly sensitive to 
moment-by-moment fluctuations in coder vigilance and, 
thus, are likely to reflect much higher within-subjects vari-
ability from round to round than is typically reported. The 
more traditional approach of using much larger coding 
samples based on entire sessions will smooth such fluc-
tuations dramatically, much as averaging does in any large 
and variable sample. However, the mathematical resolu-
tion is actually quite low with very small samples. To take 
extreme examples to illustrate, a sample of two codings 
can only vary as 0%, 50%, or 100% accuracy; a sample 
of three codings varies with intervals of .33, a sample of 
four varies in intervals of .25, and so forth. Thus, small 

Table 2 
Intraobserver Agreement and Cohen’s Kappa Measures 

for the Expert

 Session  Agreement  Kappa  

1 .910 .890
2 .910 .880
3 .970 .960
4 .960 .950
5 .950 .940
6 .950 .930

M .942 .925

Note—Initial codings using continuous procedures are compared with 
codings made approximately 18 months later using behavioral frequency 
count procedures. See Figure 6 for plots of round-to-round agreement 
variability within each of the six sessions reported in this table.
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Single-participant design perspective. For early sys-
tem evaluation, our metric based on individual rounds is 
considered far more useful for informing parametric and/
or design adjustments, with the ultimate goal not only of 
achieving higher individual performance accuracy, but also 
of minimizing intraparticipant variability. Coding accuracy 
ratios for each separate round across each condition are thus 
illustrated in separate graphs for each participant (Figures 
8, 9, and 10). To reveal the more stable trends in these data, 
the figures also include a line representing the mean accu-
racy across rounds for all rounds within each condition. For 
the longer experimental conditions, we split each into two 
halves for early/late training comparisons of trends.

Figure 8 shows that Participant 1 coded with an initial 
baseline accuracy of 40.5%, using printed reference ma-
terials. After initial foundations training, her accuracy in-
creased to 54.8%. Experiment 1 training conditions raised 
accuracy to 77.5% for the first half of the condition and 
86.6% for the second half. A shift to more stringent adap-
tive parameters resulted in 86.2% and 84.2% accuracy 
for first and second halves of the conditions, respectively. 
The posttraining baseline probe had a mean accuracy of 
89.8%, which approximated the accuracy scores of our 
expert in final evaluation conditions. However, the partici-
pant dropped to 79.1% in generalization conditions. Also 
noteworthy was the high variability around these values 
across all conditions. Experiment 2, for example, included 

measures, with scores across all sessions ranging from 
simple percentage-of-accuracy scores of .91–.97 (M 5 
.942) and kappas of .88–.96 (M 5 .925).

Group perspective. Means and associated standard 
error scores were calculated to represent experimental 
phases. Figure 7 illustrates these means as follows. For 
baseline, all the associated data were combined into one 
average score. Likewise, one average score represents all 
the postfoundation rounds. Successions of means for five 
rounds (or the actual number available, if fewer than five 
rounds were available for a given participant as training was 
completed) across all 3 participants represent trends across 
Experiments 1 and 2. Finally, a single mean represents the 
follow-up reevaluation of the original baseline rounds, and 
another represents the generalization condition.

Figure 7 reveals that a collective average of 80% ac-
curacy or better was achieved by the 5th training sample 
and was sustained in the mid-80% range for all windows 
between the 7th and the 20th training samples. Standard 
error ranges reflect that all but one of the averaged scores 
in each sample include variations that were collectively 
well within the 80%–90% accuracy range. The final 
baseline condition was above 85%, but the generaliza-
tion phase dropped below 80%. These simple interob-
server accuracy scores were approximately 8–10 per-
centage points below the expert’s intraobserver accuracy 
comparison.
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prominent feature was the moment-by-moment variability 
between rounds.

Although none of the participants reached a stabilized 
level of accuracy at or above 90%, good to excellent kappa 
scores, as defined by Bakeman and Gottman (1997), were 
achieved by all. Mean kappas calculated across all of Ex-
periment 2 sessions, collapsed for each participant, were 
.80, .83, and .78, respectively. This suggests that interob-
server performance reached a range considered “excel-
lent” according to Bakeman and Gottman’s criteria for ob-
servers collecting data in a research project. Interobserver 
agreement (kappa) scores achieved by the participants 
in Experiment 2 also conform with acceptable research 
values, using similar numbers of categories reported in 
peer-reviewed journals such as Child Development (e.g., 
Ross, Ross, Stein, & Trabasso, 2006, reported research 
kappas of .82 and .85 with 10 categories; Guralnick, Ham-
mond, Connor, & Neville, 2006, reported a kappa of .70 
for prestudy reliability, using 10 categories; and Furman 
& Simon, 2006, obtained kappas of only .72–.78 with 
7 categories).

14 rounds coded at or above 90% accuracy, with 3 reach-
ing 100%. On the other hand, 28 rounds were below 90%, 
with several in the low 70% range. This reflects consid-
erable moment-by-moment variability in coding perfor-
mance that is hidden by grouped data summaries consid-
ered by aggregated rounds.

Figure 9 depicts similar performance levels for Partici-
pant 2 across all conditions, with virtually all means at or 
above 80% accuracy following the beginning of training. 
Late Experiment 2 and posttraining levels also approached 
the levels of our expert. Again, the stability of accuracy 
scores considered round by round was improving by the 
end of the last half of Experiment 2 but still included sub-
stantial variations about the mean.

The noncontingent feedback experienced in Experi-
ment 1 by Participant 3 (see Figure 10) resulted in a mean 
accuracy below 60%, but accuracy rose to 78.1% and 
83.4%, respectively, when the participant was introduced 
to contingent training and feedback in Experiment 2. 
This level was essentially maintained during posttraining 
baseline but dropped to 71.6% in generalization. Again, a 
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Figure 8. Accuracy ratio for each successive show performance round plotted across all experimental conditions for Participant 1. 
Means for each experimental condition or split-half conditions are graphed as reference trend lines for individual round plots.
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racy levels prompted us to explore whether accuracy could 
be improved via system design changes, since the more 
stringent parametrics for adaptivity level determination in 
Experiment 2 had such minimal effect. Because our par-
ticipants did not stabilize at or above a 90% accuracy level, 
and because they maintained a substantial variability that 
occasionally included sizable drops in accuracy ratios, we 
explored their data for further design-informing feedback.

Fortunately, the TTC’s design offers not only in-depth 
information regarding general accuracy, but also specific 
information as to the types and frequency of observer er-
rors and the behavioral conditions under which they occur. 
Table 3 illustrates such a breakdown of types of errors 
made within two experimental conditions (Experiment 2 
and posttraining test). These data reveal that 24.05% (Par-
ticipant 3, training, Experiment 2) to 55.26% (Partici-
pant 2, test) of all errors were missed behaviors, whereas 
36.07% (Participant 3, test) to 47.33% (Participant 3, 
training, Experiment 2) of all errors were mislabeled. 
Table 4 illustrates a more detailed breakdown of coding 
accuracy by behavioral category. This table reveals that 

Discussion
In the previous section, we noted a common feature 

that becomes apparent only with our very high degree 
of measurement resolution: All 3 participants are quite 
variable around their respective mean levels. Some of the 
early variability undoubtedly reflects learning trends, but 
subsequent variability ranges are quite large as well and 
warrant further consideration, which we will return to 
momentarily. It is noteworthy, however, that our expert’s 
stability is substantially higher than our participants’, with 
our expert attaining a mean kappa of .925, whereas the 
participants attained only .78–.83. Although participant 
levels appear to reach levels acceptable for our referenced 
comparative publications, it should be kept in mind that 
kappa values reflect aggregated variations due to different 
levels of coding training. Furthermore, coding demands 
imposed by such factors as types of behavior defining 
a taxonomy, numbers of categories used, and behavior 
lengths/durations may impact accuracy.

For TTC formative design purposes, our observed kap-
pas and their associated simple percent-calculated accu-
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Figure 9. Accuracy ratio for each successive show performance round plotted across all experimental conditions for Participant 2. 
Means for each experimental condition or split-half conditions are graphed as reference trend lines for individual round plots.
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ing cross-canter were predominantly missed codings. This 
was especially true of Participants 1 and 2 (from 62.5% to 
100% missed, 0% mislabeled), indicating that they simply 
failed to see the behavior at all, rather than mislabeling 
it. On the other hand, Participant 3 actually mislabeled 
this behavior between 33% and 60% of the time, indicat-
ing that the behavior was more typically seen (20%–33% 
missed) but not correctly labeled. Such information is 

the training system especially failed to teach one difficult-
to-discriminate (and often brief-duration) behavior: cross-
canter. This particular behavior was coded accurately 40% 
or less of the time during Experiment 2 and posttraining 
testing by all 3 participants. 

Table 5 illustrates the more common types of errors 
(not all types) made for each category of behavior. It is 
clear from this table that the errors made while observ-
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Figure 10. Accuracy ratio for each successive show performance round plotted across all experimental conditions for Participant 3. 
Means for each experimental condition or split-half conditions are graphed as reference trend lines for individual round plots.

Table 3 
Breakdown of Errors (in Percentages) Across All Behaviors 

During Training and Final Test Conditions

Participant 1 Participant 2 Participant 3

Type of 
Error

 Training 
Experiment 2

  
Test

 Training 
Experiment 2

  
Test

 Training 
Experiment 2

  
Test

Mislabeled 41.44 38.10 38.18 36.84 47.33 36.07
MultipleC 7.18 2.38 3.63  0.00 16.03 11.48
MultipleW 16.57 4.76 16.36  7.89 12.60  9.84
Missed 34.81 54.76 42.00 55.26 24.05 42.62

Note—MultipleC, multiple coding/correct labeling; MultipleW, multiple coding/wrong 
labeling.
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probes, we made design changes in most training levels 
of the student mode. First, we designed all the levels to 
include feedback for missed behaviors. Second, we de-
signed more stringent error correction requirements for 
mislabeled and missed behavioral codings. In this revised 
version, Training Levels 1, 2, and 3 incorporate momen-
tary feedback and replay for incorrectly coded or missed 
behaviors. Thus, the system now requires that all errors be 
corrected prior to continuing to the next behavior.

Should a student be confused about a code or begin to 
guess, which is our implied interpretation after the same 
behavior has been miscoded three successive times during 
play/replay, the system shows the correct code along with 
its definition. It also offers the opportunity to review the 

critical for informing system-wide design elements and 
quickly resulted in designing changes that focus on error 
correction and other training features in the higher levels 
of the training mode.

Implemented Design Changes

Although these results indicate that our initial system 
design is relatively effective for training coding accuracy 
skills, they also suggest the need for minor improve-
ments in the adaptive training features we detailed above. 
Research-level observer accuracy was achieved quite effi-
ciently, but our failure to require error correction needs to 
be addressed. As a result of findings from these research 

Table 4 
Percentages of Correct Codings by Each Specific Category of Behavior

Participant 1 Participant 2 Participant 3

 
Behavior

 Training 
Experiment 2

  
Test

 Training 
Experiment 2

  
Test

 Training 
Experiment 2

  
Test

JMP 97.07 100.00 97.03 95.35 92.39 78.78
LLC 73.52 76.71 78.26 75.00 69.55 70.00
RLC 75.35 70.15 77.38 81.25 72.29 71.01
TRT 94.59 100.00 97.44 100.00 92.22 94.00
CC 33.33 0.00 12.50 0.00 40.00 29.00
WLK 85.42 66.67 78.38 88.89 79.31 77.78
HLT 0.00 n/a 0.00 n/a 50.00 n/a
CLIP 100.00 100.00 96.55 100.00 88.24 92.00

Note—JMP, jump; LLC, left-lead canter; RLC, right-lead canter; TRT, trot; CC, cross-canter; 
WLK, walk; HLT, halt.

Table 5 
Analysis of Mislabeled and Missed Coding Errors 

As a Percentage of All Errors Within Each Behavior

Participant 1 Participant 2 Participant 3

 
Behavior

 Training 
Experiment 2

  
Test

 Training 
Experiment 2

  
Test

 Training 
Experiment 2

  
Test

JMP
  Mislabeled 44.44 0.00 43.00 0.00 18.75 18.18
  Missed 11.11 0.00 43.00 75.00 6.67 27.27

LLC
  Mislabeled 39.66 47.06 40.00 47.37 47.73 38.10
  Missed 34.48 47.06 42.86 52.63 27.27 61.90

RLC
  Mislabeled 49.30 40.00 42.00 41.67 56.19 35.00
  Missed 29.58 50.00 32.00 41.67 28.57 35.00

TRT
  Mislabeled 75.00 0.00 0.00 0.00 100.00 0.00
  Missed 0.00 0.00 100.00 0.00 0.00 100.00

CC
  Mislabeled 0.00 0.00 0.00 0.00 33.33 60.00
  Missed 62.50 100.00 86.00 100.00 33.33 20.00

WLK
  Mislabeled 0.00 0.00 37.50 0.00 41.67 50.00
  Missed 57.14 100.00 50.00 100.00 25.00 50.00

HLT
  Mislabeled 100.00 0.00 100.00 0.00 0.00 0.00
  Missed 0.00 0.00 0.00 0.00 0.00 0.00

CLIP
  Mislabeled 0.00 0.00 0.00 0.00 16.67 100.00
  Missed 0.00 0.00 100.00 0.00 0.00 0.00

Note—JMP, jump; LLC, left-lead canter; RLC, right-lead canter; TRT, trot; CC, cross-canter; 
WLK, walk; HLT, halt.
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slightly shorter sessions than in the prior experiments in order to 
reduce possible vigilance decrement effects. As in previous studies, 
our BFC coding procedure required the participants to recognize and 
code each instance of a behavior during its occurrence, including 
black-screen round separations. Our 4 participants in Experiment 3 
received an equal number of training sessions (17), although varia-
tions in the number of rounds per session resulted in slight variations 
in the number of rounds actually coded. This is only slightly less 
total training than the 20 sessions our previous 3 participants expe-
rienced in Experiments 1 and 2 combined.

The procedure replicated that in the first stage of Experiment 1 
(baseline) by giving each participant a printed handout with the coding 
taxonomy and corresponding definitions for each included category. 
As in Experiment 1, the participants were instructed to study the hand-
out and, subsequently, to use it while coding a series of videos depict-
ing various horses performing a total of six rounds in hunter–jumper 
competition across three separate coding sessions. In a session follow-
ing completion of baseline, the participants reviewed all three levels of 
foundations training. They subsequently coded a randomly sequenced 
set of videos that included six (for 2 participants) or seven (for 2 other 
participants) total rounds of competition. These sessions essentially 
replicated our prior evaluation of the effectiveness of system-based 
foundations training (postfoundations). A subsequent training condi-
tion for Experiment 3 included a succession of 17 coding sessions of 
three to five competitive show rounds within each session. During all 
the training sessions, four levels of adaptive training strategies were 
in effect for each participant, as in Experiments 1 and 2, with the 
only differences being the TTC design modifications implemented 
after Experiment 2 as described in our Discussion section above. As 
in Experiment 2, the criterion for moving up a level was set to 90% 

behavior, just as would occur at the foundations levels. 
This feature also allows the student to replay the behavior 
for recoding. When a student mislabels or misses a be-
havior altogether in Training Level 3, the behavior is now 
replayed with prompting and feedback features identical 
to those used in Level 2, thus offering the support of a 
lower level for mislabeled/missed behaviors only. Finally, 
Training Level 4 now offers a momentary feedback-only 
(no replay/recode) message for all types of errors, with the 
type of error being stated in the feedback.

Experiment 3

Method
Participants. We recruited 4 new female participants between 

the ages of 18 and 21 years to evaluate the effectiveness of the TTC 
modifications described above. Each was informed that she was 
being asked to participate in a longitudinal multisession research 
design and was expected to return to the laboratory on several dif-
ferent days for participation. The physical conditions described for 
Experiments 1 and 2 were also used, including a single participant’s 
being seated at a computer training station and being observed by 
the experimenter from a separate room.

Procedure. All the participants used the same corpus of video 
source materials coding with our horse gait taxonomy, thus main-
taining sports-judging skills as our exemplar application. For this 
experiment, the original video materials were randomized by in-
dividual to avoid any potential order effects and were presented in 
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Experiment 3.
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to the second half of the experiment, as one would expect 
of training interventions.

Design modifications preceding Experiment 3 focused 
on efforts to increase accuracy scores while also decreas-
ing variability in those scores. To explore the effectiveness 
of these design modifications, the single mean scores and 
single standard deviations for accuracy scores represent-
ing the last 30 rounds of coding for each of the 3 partici-
pants in our earlier Experiment 2 were compared with the 
same calculations for the 4 participants in Experiment 3. 
Although the means increased from 84.7 in Experiment 2 
to 87.7 in Experiment 3, a t test based on individual mean 
accuracy scores showed that differences between inde-
pendent groups were not significantly different [t(5) 5 
1.215, n.s.]. To evaluate the relative stability of the last 30 
accuracy scores for each participant in Experiment 2 ver-
sus Experiment 3, a separate analysis treated the standard 
deviations for the means above for each participant as the 
raw score. Even though group sizes for this comparison 
were again only 3 and 4 participants, respectively, a t test 
for differences between the standard deviation scores re-
sulted in t(5) 5 4.183, p , .01, thus indicating that vari-
ability in scores was significantly lowered for the partici-
pants in Experiment 3.

Training aspects. One noteworthy aspect of the data in 
both Experiment 1 and Experiment 3 is the relatively small 
degree of required training at the outset. Whereas partici-
pants typically attained approximately 55%–60% accuracy 
simply from watching examples and reading definitions 
during foundations training, their very first sessions of real-
time training reflected jumps to 65%–75% accuracy within 
the first session. Given that they attained maximum levels 
of accuracy in the 80%–90% range, this reveals what might 
appear as relatively small acquisition/improvement effects 
even over extended training sessions.

accuracy across 20 successive codings, and the criterion to move down 
was set at 80% accuracy across 20 successive codings.

Results
Grouped data accuracy and stability. Figure 11 de-

picts grouped scores by successive session for all 4 par-
ticipants. The baseline phase using only written defini-
tions and code abbreviations shows improvement from 
30% up to 55% across three separate sessions, but with 
substantial variability (standard error) between partici-
pants. The experimental phase following exposure to the 
three foundations levels within TTC show a sustained per-
formance of approximately 55% accuracy, and with only 
slightly diminished interparticipant variability. Training 
shows an immediate jump to approximately 75% accuracy 
during the first session and a gradual increase to levels 
between 85% and 90% during the last six sessions, with 
relatively consistent small standard errors for these re-
spective means. 

Although we were cognizant of the problems with even 
simple inferential tests based on assumptions of indepen-
dent scores, the robustness of a paired-comparisons t test 
led us to explore selected comparisons for statistical in-
formation. Because the participants coded a random pre-
sentation of session-defining videos twice, once during 
the first half of training and again during the second half 
of training, accuracy data for specific rounds (vs. ses-
sions) were averaged into first- and second-half scores for 
each of the 4 participants. An increase in accuracy from 
the first half of training (81.4% mean accuracy across all 
rounds and all participants) to the second half of training 
(87.5%) was evaluated using SPSS to conduct a t test for 
paired data. Statistically reliable differences were obtained 
[t(3) 5 6.709, p , .01], indicating that the group signifi-
cantly improved accuracy performance from the first half 
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multiple within-subjects measures across multiple (four) 
replications of a single-participant research design. Thus, 
Figures 13–16 depict single-participant accuracy levels by 
sessions and by rounds within sessions for each partici-
pant in Experiment 3. These reflect individual attainments 
in both accuracy (session levels, graphed as lines) and 
stability (rounds within sessions, graphed by dots). Also 
graphed against the right-hand ordinate is the individual-
ized data on adaptive training support levels that corre-
spond to respective rounds being coded. These adaptive 
support levels remain inversely associated with their num-
bers, with minimal prompting and feedback being given in 
Level 4 and maximal support being given in Level 1.

Detailed inspection of these four figures reveals the 
true dynamics of the training system and the individual-
ization of its services in almost instantaneously develop-
ing high accuracy scores and differentially responding 
to momentary drops in individual accuracy. Participants 
05 and 08 learned to code with virtually total (Partici-
pant 08) or nearly total (05) sustained fading of all sup-
portive prompting and feedback. That is, both retained 
running averages above the 80% trigger level that recom-
mends a drop in training level to reinstate higher degrees 
of prompting and training support. Participant 08 stayed 
at Level 4’s highly faded services consistently through-
out Sessions 9–17. Participant 05 attained the minimal 
prompting and feedback of Level 4 by the 9th session. 

It is critical to consider whether accuracy levels include 
the support services or not. Only nonprompted coding 
would ever be considered as research-level skills. To assess 
whether our adaptive training strategy would account for 
this sustained high level of performance from the outset, 
we investigated the average support level in effect across 
the various sessions reflected in the training accuracy 
graph (i.e., Figure 11). Each adaptive training level was 
given a numeric value of 1, 2, 3, or 4, respectively, with 
Level 1 incorporating the highest degree of support and 
Level 4 the lowest degree of support. These values were 
then averaged across our 4 participants in Experiment 3 
within each competitive round coded. The results of this 
analysis are depicted in Figure 12, which reveals where the 
most substantial learning curve effect occurred during this 
training experiment. That is, TTC is designed to be highly 
supportive with prompts and feedback in early stages of 
training and is sufficiently accomplished in this goal as to 
ensure initial training levels of 65%–75% accuracy, but 
with mostly Level 1 (highest degree) support. There is 
minor improvement in the accuracy across sessions, but 
a very clear and systematic withdrawal of prompting and 
feedback support for that sustained performance. By the 
last quarter of training, there is only sporadic support re-
quired, and that being of a minimalist nature.

Single-participant perspective. As with our prior ex-
periments, our present experiment may also be viewed as 
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ries of experiments. It demonstrates the valuable role of 
continuing formative research. 

How this increased stability was achieved is especially 
noteworthy. All too often, researchers report only accu-
racy or interobserver agreements (whether measured by 
simple percentage-of-agreement or kappa scores) for en-
tire experiments or perhaps, at best, across specific sam-
ples of observer evaluation sessions. As we suggested in 
the opening paragraph to this article, it is extremely rare 
to find reports of intraobserver accuracy stability in obser-
vational research. Our statistical evaluation for the 4 par-
ticipants in Experiment 3, when considered as a group, 
demonstrates reliable differences in standard deviations 
between those 4 participants and the 3 participants in Ex-
periments 1 and 2 across their final 30 rounds of coding. 
But there is little suggestion of within-session decreases 
of variability throughout training for the individual par-
ticipants in Experiment 3.

Although there is a slight, but statistically reliable, in-
crease in accuracy from the first half of training to the 
second half of training in Experiment 3, these data alone 
reflect little apparent learning curve on a scale most 
learning researchers are accustomed to seeing. That is, 
all 4 participants began at very high levels of accuracy 
(70%–83%) in their first training session and only very 
gradually achieved more sustained levels of accuracy any 
higher than this. So where is the learning curve for these 

She later experienced three brief returns of higher level 
support services, however, with the most support being re-
turned in the latter portions of Session 15. Participants 06 
and 07, on the other hand, were much more variably reli-
ant upon training interventions and did not reach relatively 
sustained Level 4 services until their last 5 or 6 sessions. 
In fact, Participant 07 dropped all the way to Level 2 ser-
vices, which are highly prompted and supportive, in the 
final two rounds of her 17th session. Nevertheless, session 
averages for accuracy stayed consistently at acceptable re-
search standards throughout the last 5 sessions of training 
for both Participants 06 and 07.

General Discussion 
and Conclusions

The results from the preliminary formative experiments 
that we present indicate that TTC and, especially, the adap-
tive operant training model it incorporates are effective 
for training novice observers to accurately recognize and 
label almost all behaviors, using the taxonomy and video 
content employed. Although the first two experiments in-
volved some limitations, our third experiment addressed 
several critical issues raised. For example, the statistically 
reliable decrease in intraindividual variability achieved in 
Experiment 3 is encouraging, in that it provides support 
for the design modifications made following the first se-
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Figure 14. Single-participant accuracy and training service levels by sessions and by rounds within sessions for Participant 06.
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Existing foundations services allow participants to play 
a video while seeing the label for the behavioral events 
being illustrated. We are incorporating this labeled play of 
the video, in a slightly modified form, within our training 
services. We are going to require a trainee to engage in all 
of the coding input and system control (play, pause, replay, 
etc.) behaviors that advanced training levels currently rely 
on. However, we also provide sufficient prompts (includ-
ing a clear “labeling” of the behavior as to how it should 
be coded, as well as which keypad equivalent to use for 
its coding) to start participants with as few errors as pos-
sible. From this obvious labeling and instructions stage, 
we can then fade (see Sidman & Stoddard, 1967) prompts 
to service levels that systematically provide presentations 
of less obvious stimulus conditions. The goal of such a 
change is to bridge the gaps between the 50% performance 
observed in postfoundations versus the 75% performance 
observed during initial training.

Other planned features do not really require research 
so much as timely implementation. For example, in its 
current development state, TTC saves all data locally as 
files. Once we are satisfied with the efficacy of the system 
and have solidified decisions on all data structures, we 
plan to implement TTC as a server-driven database sys-
tem. In this configuration, the application and video will 
exist on the client side, conversing via the Internet with 
server-stored expert and coding data. This model mirrors 

participants? As we have clearly illustrated in Figure 11, 
it is in the fading of supportive prompting that is being 
used to shape discriminative coding behaviors. That is, 
the shift from Level 1 through Levels 2, 3, and finally 4 
appears much more like a learning curve than do the very 
gradual changes in accuracy. This is a phenomenon com-
monly recognized by operant researchers as errorless 
discrimination learning (see Sidman & Stoddard, 1967; 
Terrace, 1963a, 1963b). And it has suggested to us yet 
another design modification to enhance this phenomenon 
and to build upon the effects of foundations training.

The substantial gain in accuracy following mere expo-
sure to our foundations levels has suggested that we might 
well have the opportunity to develop an even more efficient 
analogue to operant errorless discrimination procedures. In 
such procedures, participants are sufficiently prompted as 
to virtually guarantee successful discrimination from the 
outset of training. Subsequently, these obvious prompts are 
faded gradually in successive approximations to the even-
tual generalization goal, thus allowing new discriminations 
to develop while the participant makes very few, if any, er-
rors in responding to the emergent discriminative nature 
of relevant stimuli. Drawing on this added operant instruc-
tional design dimension, we are currently modifying TTC 
to meld our existing two “advanced,” but passive, levels of 
foundations services into a new lower level, or more sup-
portive, dual-service training level.
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Figure 15. Single-participant accuracy and training service levels by sessions and by rounds within sessions for Participant 07.
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between early sessions and subsequent sessions in our 
within-subjects longitudinal experimental designs. Nev-
ertheless, when one attempts to train new participants, the 
question needs to be considered as to whether reuse of any 
video source materials is desirable or not. We think a case 
can be made in favor of overtraining on any given video 
materials, to perhaps allow one to become more attentive 
to unique and occasionally inconspicuous discriminative 
features of specific behavioral events in hopes of gaining 
generalization to new video source materials. Such issues 
suggest future research opportunities to evaluate whether, 
in applied settings especially, multiple video reuse is de-
sirable or not desirable.

Although we believe TTC has utility for training obser-
vational coding skills in the classroom and laboratory, this 
was not the only intent in its design. The program was pri-
marily developed as a training tool for workers in applied 
settings. TTC focuses on (1) teaching the discriminative 
recognition of behavior, (2) training arbitrary verbal labels 
for behavior (what operant researchers refer to as tacting; 
see Skinner, 1957), and (3) given appropriately defined 
response-focused taxonomies, even the appropriate timing 
and identification of a desired interventional or social re-
sponse to specific classes of behavior. The tool was not de-
signed exclusively for the development of coding schemes, 
nor for the continuous coding of behaviors of focal inter-
est, although these stages are required for expert setups. 

our other applications, such as CyberRat (R. D. Ray, 2003) 
and MediaMatrix (R. D. Ray, 2004).

Future studies are needed to investigate effective uses 
for the code viewer feature, as well as a newly incorpo-
rated notes system that allows an instructor/expert to 
highlight coding decision criteria for specific problematic 
behavioral instances. We anticipate that this notes feature 
will especially help in cases in which coding criteria are 
subtle or potentially confusing, as they frequently were 
with cross-cantering in the study above. Notes should 
also be a significant aid where video events obscure vari-
ous, and often critical, features of behaviors, thus requir-
ing inferences to be applied by the observer. Under these 
conditions, as an expert codes any given reference file, 
notations can be made as to why a specific coding deci-
sion was made. This notation will then be accessible in the 
code viewer to help the student more thoroughly review 
and understand errors and applicable criteria prior to fur-
ther training.

There are many issues relevant for future delibera-
tion that are apparent to us as we continue TTC develop-
ment. For example, in our experiments, a limited corpus 
of video illustrations required randomized reuse of prior 
videos during the second half of each experiment. We 
are fairly confident that familiarization with a video was 
not a significant factor, given the sheer volume of rounds 
shown, as well as the substantial number of days extant 
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Figure 16. Single-participant accuracy and training service levels by sessions and by rounds within sessions for Participant 08.
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undergraduate college students how to scaffold prereading 
book-and-story interaction behaviors in preschool children 
in a developmental laboratory school. We are filming ex-
pert scaffolding examples and have created a taxonomy for 
coding various alternative strategic types of verbal scaf-
folding. We are now exploring whether training students to 
code such events will also teach those same students more 
quickly and with less instructor interventions to use such 
scaffolding techniques in their own lab-school interactions 
with the preschool children. Current pilot data are highly 
encouraging and suggest that our instructional design strat-
egy and TTC modifications for adding FBFC procedures 
are not only valid, but also sufficiently effective in applica-
tion to make the TTC system well worth the time and effort 
being invested in its development.

Author Note

Train-to-Code is a software system developed under the auspices and 
support of (AI)2, Inc., a software research, development, and publish-
ing company in which both authors are principals. Experiments 1 and 2 
were conducted as an Honors in the Psychology Major Senior Thesis by 
J.M.R. while a senior undergraduate at Rollins College. She thanks her 
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2006 Meeting of the Society for Computers in Psychology and received 
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